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Abstract A displacement-shifted approach is introduced

to the vision-based particle tracking velocimetry (VB-

PTV) technique described in Lei et al. (Exp Fluids

53(5):1251–1268, 2012), using translational and angular

displacements. The particle matching algorithm in VB-

PTV is based on a proximity matrix, Gij, which favors short

distance particle matches over long distance matches. By

modifying the formula used in constructing Gij, particles

that lie at the expected location of the match are favored.

Two displacement-shifted methods are introduced: the first

of which relies on particle image velocimetry estimates of

particle displacements and the second of which relies on

both the expected displacement and direction of the correct

match to construct the proximity matrix. These displace-

ment-shifted algorithms improve performance in high

gradient (0.3 px/px and above), high displacement flows

(upwards of 20 pixels), broadening the range of flows for

which VB-PTV can be used. RMS errors in PTV results are

reduced by 33 % or more when these displacement-shifted

algorithms are made to the VB-PTV algorithm which is

used to process Oseen vortex images. Experimental images

of shear layer and the wake region of vortex shedding were

used to verify the performances of the proposed methods,

and the results are in agreement with the synthetic tests.

1 Introduction

Particle velocimetry refers to that body of techniques

whose goal is the attainment of an instantaneous velocity

vector field through the measurement of displacements of

particles within a fluid in motion. Two important methods

within the field of particle velocimetry are particle image

velocimetry (PIV), in which velocities are obtained by

correlation of a window containing multiple particle ima-

ges, and particle tracking velocimetry (PTV), in which

displacements of individual particles are measured.

Descriptions of PIV techniques can be found in, for

example, Raffel et al. (1998), Dabiri (2006), and Adrian

and Westerweel (2011), and an overview of the develop-

ment of particle tracking techniques is given in Lei et al.

(2012). In that paper, a new particle tracking technique is

developed which uses a feature association algorithm from

computer vision theory (Scott and Longuet-Higgins 1991)

which is guided by PIV results. The concept of considering

the matching process as a global optimization process is

similar to the cellular neural network PTV approach (Ohmi

and Sapkota 2006), but differs in the choice of cost func-

tion and mathematics to minimize the cost function. Details

of this method will be described shortly, but it was found

that the performance of this technique suffered in high flow

gradients (0.3 pixels/pixel and higher), especially when

large particle displacements, up to 25 pixels, were present.

This displacement in pixel corresponds to a ratio of mean

interparticle spacing to the absolute displacement d* of

0.23. Two displacement-shifted methods are presented here

which reduce this degradation of performance in shearing

flows and improve overall matching performance.

The original vision-based PTV technique is described in

Sect. 2. The displacement-shifted methods are proposed in

Sect. 3. Synthetic images are processed, and the
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performances of the displacement-shifted matching tech-

niques are compared with the original in Sect. 4. Conclu-

sions and recommendations are made in Sect. 5.

2 Vision-based PTV

The particle tracking technique described in Lei et al. (2012)

and here called vision-based PTV (VB-PTV) relies on three

principles from the field of computer vision when matching

particle images in multiple image frames: the principles of

proximity, exclusion, and similarity. The principle of prox-

imity states that a shorter distance match is preferred to a long

one; the principle of exclusion requires one-to-one mapping

between features in multiple frames, and the principle or

constraint of similarity prefers matches which appear simi-

lar. The original technique from Scott and Longuet-Higgins

(1991) applies the principles of proximity and exclusion, and

Pilu (1997) recommends the constraint of similarity. These

are adapted to particle tracking in the following way (Lei

et al. 2012). After particles have been identified, there will be

two lists of particle coordinates. For clarity, a naming con-

vention is introduced. Typically, two successive images are

processed in the matching algorithm. Particle images in

frame 1 will be called target particles, and potential matches

in frame 2 will be called candidate particles. The lists of

coordinates of target and candidate particles are used to

construct what has been dubbed the ‘‘proximity matrix’’, Gij,

found using the inverse Gaussian weighted distance between

all target and candidate particles:

Gij ¼ e�r2
ij=2r2 ð1Þ

Here, rij is the distance between particles i and j, and r is

the ‘‘characteristic distance’’ which was determined using

twice the local displacement as determined by interpolating

PIV results to a target particle’s location. This results in a

m 9 n matrix where m is the number of target particles and

n the number of candidate particles. This matrix provides

the principle of proximity. If particles i and j have no

displacement between them, element Gij will be unity, and

if they are far from one another, element Gij will be

essentially zero. This matrix was modified using the con-

straint of similarity, per Pilu (1997), by including a cross-

correlation term, Cij. Windows, with dimensions W 9 W,

of the pixel intensities around each target and candidate

particle are correlated, and the results are reflected in a

‘‘similarity matrix’’, Cij.

Cij ¼
PW

u¼1

PW
v¼1 IA u; vð Þ � IA

� �
� IB u; vð Þ � IB

� �

W2 � RðIAÞ � RðIBÞ
ð2Þ

IA and IB are the mean pixel intensities within each

correlation window, and R IAð Þ and RðIBÞ are the standard

deviations (not summations; a capital sigma is used to

avoid confusion with the characteristic distance) of those

pixel intensities. The value of Cij can range from -1 for a

completely uncorrelated candidate feature to 1 for an

identical feature. This can be incorporated into the

proximity matrix:

G0ij ¼ G � e
� Cij�1ð Þ2

2c2 : ð3Þ

In this formulation, the similarity coefficient is Gaussian

weighted, where c is a correlation parameter which controls

the rate of decay of similarity weighting. This value is set to

0.4, per Pilu (1997). This modification reduces the impact of

rogue features (particles moving in and out of the image

plane) and produces more valid matches than the original

algorithm. This method is similar to the initial probability

estimation of the disparity proposed by Barnard and

Thompson (1980). The difference is that in the current work,

the cross-correlation has a different mathematical form.

This displacement-shifted proximity matrix is used to

construct the ‘‘pairing matrix’’, which is used to determine

matches, by performing singular value decomposition.

G0 ¼ TDU: ð4Þ

T and U are orthogonal matrices, and D is a non-nega-

tive diagonal matrix with the same dimensions as G. The

matrix D is replaced with a rectangular identity matrix of

the same dimensions and used to find the pairing matrix

P ¼ TIU: ð5Þ

This technique results in the orthogonal pairing matrix

P, which maximizes the inner product P:G. This matrix is

used to find matched features. If an element Pij is the

maximum of the ith row and jth column, then particles

i and j are considered matches. The mutually orthogonal

rows of the P matrix tend to disallow a strong correspon-

dence between one target feature with more than one

candidate feature, or vice versa. In this way, the exclusion

principle is satisfied without explicitly enforcing it, as has

been done in other similar vision methods (Ullman 1979).

This technique was implemented iteratively along with an

outlier detection scheme (Duncan et al. 2010) used to

validate matches. For further mathematical details, the

reader is directed to Scott and Longuet-Higgins (1991) as

well as Schonemann (1966). For further details on the VB-

PTV technique, including the particle identification algo-

rithm, the reader is referred to Lei et al. (2012).

When the VB-PTV technique was used to process syn-

thetic images, it showed robust performance. The measures

of performance were RMS error, given as the root-mean-

square error of particle displacements when compared to

the analytic solution, as well as match yield and reliability,

given as percentages and defined in the following way:
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EY ¼
n

v
ð6Þ

ER ¼
n

d
ð7Þ

Match yield, EY, is the number of correct matches over

the number of possible matches, and reliability, ER, is the

number of correct matches over the total number of mat-

ches made. A match is considered correct if it lies within 1

pixel of the true solution. That is, in a synthetic image with

a known flow profile, the true displacement of a target

particle in frame 1 can be calculated and the correct

location of its corresponding candidate particle in frame 2

determined. If the matched candidate particle is within 1

pixel of the true match’s location, that match is considered

correct. Additionally, two basic types of tests were per-

formed in Lei et al. (2012): those using known particle

locations and those using unknown particle locations. In

the former, lists of exact coordinates of particle images are

fed into the matching algorithm. This is essentially a way

of isolating the performance of the matching algorithm

independently from a particle finding algorithm. In the

unknown particle location tests, images are processed by

the particle location algorithm and the resulting particle

coordinates, which will contain inaccuracies, are fed into

the matching algorithm.

Typically, the VB-PTV algorithm was able to achieve

reliabilities of over 98 % and RMS errors below 0.3 pixels

for a variety of flows. Match yields varied more, but were

generally above 80 %. It was found, however, that the VB-

PTV technique suffered a drop-off in yield and reliability

and a rise in RMS error in highly shearing flows. It was

also found that this performance was worsened by the

presence of large displacements. Synthetic images were

processed with regions of uniform gradient (from 0.1 to 0.5

px/px) and different maximum velocities (±7 and ±25

pixels, d* = 0.82 and 0.23), using known particle loca-

tions. The results from Lei et al. (2012) are shown in

Fig. 1. While reliability tended to remain above 98 %, the

flow gradients caused RMS errors to rise to around 0.3

pixels when displacements of up to 7 pixels (d* = 0.82)

were present and over 0.7 pixels when larger displacements

were present. The match yield also dropped significantly at

high gradients in the presence of large displacements. In

light of this performance, the displacement-shifted modi-

fications to the matching algorithm used in VB-PTV are

proposed.

3 Displacement-shifted matching

It was seen that the current tracking algorithm’s perfor-

mance suffered in high displacement, high gradient flows.

Figure 1 shows that errors increased and match yield and

reliability percentages dropped as flow gradients increased,

and this was more pronounced when the flow contained

larger displacements. To address this, the Scott and

Longuet-Higgins (1991) method of constructing a prox-

imity matrix is re-examined. The formula for the proximity

matrix is repeated below,

Gij ¼ e�r2
ij=2r2 ð1Þ

This matching method was designed for computer vision

and might be used to match features in stereo images. Its

strength lays in its simplicity and generality, as it required

only one user defined parameter—the characteristic dis-

tance r—which itself did not require a great deal of pre-

cision. Results were roughly the same so long as r was

representative of the mean displacement between features,

Fig. 1 a RMS error, and b percent yield and reliability versus flow

gradient for uniform shearing flow. Flows containing maximum

displacements of ±7 (d* = 0.82) and ±25 pixels (d* = 0.23) are

compared. The PTV matching is guided both by PIV and exact

analytic solutions (Lei et al. 2012)
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and preferably an overestimate of this value. Scott and

Longuet-Higgins explain that features in successive images

will often be related by a transformation which is affine or

nearly so. They show that when one set of points is mapped

into another by a translation, expansion, or shear defor-

mation, the 1:1 mapping minimizes the sum of squares of

distances between the sets of points. And they argue that by

choosing a sufficiently large r, their matching method

possesses this same property and thus is useful in dis-

cerning the many and varied transformations which exist

between feature sets in image pairs. Here, a more graphical

view is taken of the matching method with emphasis on the

construction of the proximity matrix, Gij. The process of

performing singular value decomposition on this matrix to

obtain a pairing matrix Pij is unchanged, and so the prop-

erties that allow for robust matching remain.

We can imagine a Gaussian ‘‘proximity surface’’ exist-

ing around each target particle j in frame 1, described by

Eq. 1, which can be thought of as a measure of a location’s

proximity to a target particle. This surface reaches a

maximum of 1 when rij is zero and decreases monotoni-

cally as rij increases (see Fig. 2). A candidate particle i in

frame two will have some value depending on where it falls

on this proximity surface. This value is element Gij. Since

the proximity matrix is constructed using the principle of

proximity, candidate particles which are closer to the target

particle (that is, they experienced a smaller displacement)

will have a larger element Gij. If the proximity matrix were

used on its own for matching by selecting elements with

the largest values in given rows and columns, it would

result in a nearest neighbor method. The parameter r
controls the rate of decay or the breadth of this Gaussian

surface. When r is small, the surface is small and only

candidate particles near the target particle will have large

values in the pairing matrix G. When r is large, the

Gaussian surface widens and more candidate particles will

have large values. The process of creating a pairing matrix

P permits the correct match to be found in most cases

because matching is performed on all particles at once and

coherent particle motion is preferred to simply matching a

target particle with its nearest candidate. However, reliance

on this formulation of the proximity matrix introduces

unnecessary noise to the matching process, especially for

large displacements. Two simple displacement-shifted

modifications to Gij are proposed here.

Because an estimate of local displacements can be

obtained from PIV to provide guidance to the matching

process, a more selective proximity matrix can be con-

structed. In the first modification, the proximity matrix is

created using the following formula:

Gij ¼ e�ðrij�rPIVÞ2=2e2 ð8Þ

Instead of favoring candidate particles with zero dis-

placement (rij = 0), the new proximity surface reaches a

maximum when rij is equal to the displacement predicted

by PIV, rPIV, resulting in a ring-like proximity surface.

This modification, which is guided by expected displace-

ments, will be referred to as modification D1. In the second

modification, the expected direction as well as displace-

ment is taken into account.

Gij ¼ e� rij�rPIVð Þ2=2e2
� �

� e
� tan�1dyij

dxij

� �2

� tan�1dyPIV
dxPIV

� �2
� 	

=2u2


 �

ð9Þ

The terms dyij and dxij are the pixel distances between

target particle i and candidate particle j. The dyPIV and

dxPIV terms represent the x and y displacements of target

particle i predicted by PIV. The second exponential term in

Eq. 9 provides a comparison between a candidate particle’s

angle in relation to the target particle and the PIV predic-

tion of the angle of a target particle’s displacement. The

resulting proximity surface contains a peak in each quad-

rant, one of which will lie at the expected location of the

target particle’s matching candidate particle. The scaling

parameters e and u are discussed later. This modification,

based on displacement and directional guidance, will be

referred to as modification D2. For comparison, proximity

surfaces for a predicted displacement of 7 pixels

(d* = 0.82) at 45� above the x-axis are shown in Figs. 2, 3,

4.

It can be seen from the above figures that the original

method can result in many candidate particles with large

values in the proximity matrix, while the displacement-

shifted methods are far more selective and will result in a

more sparse proximity matrix. This becomes more pro-

nounced with larger predicted displacements. Like the

original Gaussian proximity surface, the ring-like shape of

the first displacement-shifted method and the peaks in the

Fig. 2 Gaussian proximity surface from original Scott and Longuet-

Higgins method
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second method can be widened or narrowed by controlling

the parameters e and u. In the following results, e was set to

a value of 4. This was found to be the optimum value for

high gradient flows and performed well in all other tested

flows. If this parameter were made to be adaptive, it might

be related to the estimated error between the predicted

displacement, as found by PIV, and the true particle dis-

placement. The parameter u is set to unity and could

similarly be related to the error between the flow direction

as estimated by PIV and the actual flow direction. The

proximity matrix created using Eqs. 8 or 9 is still combined

with the correlation term, per Eq. 3, before it undergoes

singular value decomposition.

Since both modifications are aimed at increasing the

selectivity of the guidance PIV, the accuracy of the guid-

ance PIV becomes an important factor to the tracking

results. In general, the recommended interrogation window

should contain 6–10 particle images for a reliable PIV

cross-correlation operation. In the current study, the inter-

rogation window size of the guidance PIV is set to 16 by 16

pixel, and the particle image density is 0.03 particles/per

pixel. The resulting averaged particle number in each

interrogation window is 7.67, which is in the medium range

and still appropriate for the PIV algorithm to work. In

practice, the values of e and u are used to control the

sensitivity of the proximity surface to the PIV guidance,

and the optimized values are related to the ability of the

PIV guidance to resolve the velocity gradient. The PIV

guidance that follows the local flow velocity provides

better initial estimation, and therefore more chances for the

correct matching pairs to have high Gij values in the

proximity surface to be picked up by the tracking algo-

rithm. Since the PIV window size is usually set toward the

maximum achievable resolution, the judgment of a good

choice of e and u values would be to achieve least amount

of outliers and most matches. More matched vectors indi-

cate good matching yield, and less outliers indicate a

higher reliability of the tracking results.

4 Results from synthetic images

These displacement-shifted methods were used to process

many of the same synthetic flows described in Lei, et al.

(2012). Since the modifications were initially produced in

response to errors seen in VB-PTV performed on high

gradient flow, results from uniform shearing flows are

presented first.

It can be seen in Fig. 5 that the displacement-shifted

methods have little effect on RMS error, match yield, and

reliability when compared with the original matching

algorithm’s performance on shearing flow with displace-

ments of up to ±7 pixels (d* = 0.82). The improvement

can be seen by looking at Fig. 6, which shows results from

shearing flows with displacements of up to ±25 pixels

(d* = 0.23). Both displacement-shifted methods lower

error and increase yield and reliability, and the second

displacement-shifted method provides the most improve-

ment. As much as 60 % of the RMS error is removed by

the second displacement-shifted method, match yield is

increased by up to 24 %. Even the already high reliability

percentage is improved with the displacement-shifted

approach, only dropping to 99.6, versus 98.86 % using the

original method, at a shear of 0.5 px/px. The second dis-

placement-shifted results in an error curve which resembles

that for the small displacement shearing flow, with a

maximum RMS error of roughly 0.3 px at high shear stress

values. It would therefore seem that this improved

approach reduces the error induced by large displacements

in shearing flow, though not the errors induced by high

gradients themselves. Given these improvements, the dis-

placement-shifted matching methods are applied to other

more complicated synthetic flows.

Fig. 4 Proximity surface from mod-D2 using displacement and

directional guidance

Fig. 3 Proximity surface from mod-D1, using displacement guidance
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In Lei et al. (2012), synthetic images generated using a

moving wall flow, or Stokes’ first problem, were processed.

These images were also processed using the displacement-

shifted matching, but results are not recorded. The original

method already provided RMS errors below 0.1 px, match

yields of over 98 % and matches with reliabilities of over

99.6 %, and the modifications provided little or no

improvement. The majority of particle locations change

either not at all or negligibly between the image frames,

and for this reason, it would not be expected that there

would be a large difference between the original method,

which favors a close match to a distant one, and the dis-

placement-shifted methods. Similarly, standard images

from the Visualization Society of Japan (Okamoto et al.

2000) were processed, but because they contain displace-

ments no larger than 10 pixels (d* = 0.58), and gradients

of approximately 0.2 px/px or less, little improvement over

the results recorded in Lei et al. (2012) was expected or

seen.

In order to fully utilize the directional guidance pro-

vided by the second modification, synthetic images are

generated using a two-dimensional Oseen vortex flow

described as

uh ¼
C

2pr
1� e�

r2

c

� �
: ð10Þ

Radial velocity is zero, C = 5,000p, c = 5,000, and r is

the radial distance from the center of the vortex. Dis-

placements in this flow vary from 0 to 22 pixels

(d* [ 0.26) and gradients (quh/qr) vary from near zero to

0.5 px/px. The RMS errors from matching results are

presented as bar charts in Fig. 7. Three cases are shown for
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Fig. 5 a RMS error versus flow gradient with a maximum velocity of 7 pixels (d* = 0.82), and b match yield and reliability percentages versus

gradient using the original and displacement-shifted matching methods
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Fig. 6 a RMS error versus flow gradient with a maximum velocity of 25 pixels (d* = 0.23), and b match yield and reliability percentages versus

gradient using the original and displacement-shifted matching methods
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each matching method: one with known particle locations

and the regular PIV guidance used in constructing the

proximity matrix, Gij; one with known locations and per-

fect guidance using the analytic flow solutions to construct

Gij; and one with unknown particle locations and regular

PIV guidance. The match yield and reliability percentages

were generally unchanged or slightly improved by the

displacement-shifted approach.

There does not seem to be a clear difference between the

performance from modifications D1 and D2 seen in these

results, but both displacement-shifted approaches clearly

result in improved performance when compared with the

original matching method. The improvements to the

matching algorithm reduce the RMS error for an Oseen

vortex flow by as much as 80 % in the idealized case of

perfect guidance, by more than 40 % when PIV guidance is

used with known particle locations, and by 33 % when

particle locations must be identified.

5 Results from experimental images

The last validation of the modified methods is to apply the

methods to real experimental images. The modified meth-

ods were first tested with the same shear layer images used

in Lei et al. (2012). All three algorithms were applied to the

experimental images, and the particle locations were found

using the method described in the previous work (Lei et al.

2012). The parameters used in modification D1 and D2 are

the same as used in the synthetic image tests. The resulting

velocity fields from different methods are overlaid and

shown in Fig. 8a and a zoom-in view in Fig. 8c. The

maximum velocity gradient and velocity in the shear layer

images were 0.08 px/px and 4.44 px (d* = 2.17). The

original and modified methods gave almost the same

results, with only a few vectors difference. Similar to the

synthetic image tests, the performances of the matching

methods are verified by particle yield and reliability.

Because for the experimental images there are no ‘‘correct

matches’’ available, the definitions are slightly different to

the ones described in the previous sections. The particle

yield is defined as number of matches found over the

number of particles identified, and the matching reliability

is defined as the number of matches found over the number

of matches validated by a universal outlier detection

method (Duncan et al. 2010). The numbers are listed in

Table 1. These results are in agreement with the synthetic

image results shown in Fig. 5a, that the performance dif-

ference is very small if both the velocity and velocity

gradients are small.

An experimental setup to observe the wake region of

flow behind a cylinder was then conducted to test the

algorithms’ performances under higher velocity gradients.

A cylinder of 0.25 in. (6.35 mm) diameter was put inside a

6 by 12 in. (15.24 by 30.48 cm) water tunnel with a free-

stream flow velocity of 29.7 mm/s. The imaging area was

19.4 by 19.4 mm, chosen right behind the cylinder to

capture the flow at the wake region, where the velocity

gradient is expected to be the largest. The corresponding

Reynolds number is 187. The time interval between the

two frames was set to 30 ms to achieve the high maximum

displacement condition. The maximum velocity (displace-

ment) and velocity gradient are 59.98 px (d* = 0.21) and

0.24 px/px. The resulting velocity fields from different

methods are overlaid and shown in Fig. 8b and zoom-in

view in Fig. 8d. The particle yield and reliability numbers

are listed in Table 1. It can be observed that in the center of

the wake region, the flow is highly rotational. In the region

near free stream, the flow has a strong shear. With large

displacement and high gradient, these regions can be dif-

ficult for the matching algorithms to work. However, a

zoom-in look at the wake region (indicated by the red

rectangle in Fig. 8b and the results are listed in Table 1)

shows that the performance is at the same level as the

results from the full image.

The performance numbers in Table 1 of the two dif-

ferent experimental image sets are in agreement with the

synthetic image test results shown in Sect. 4. The perfor-

mance differences between the modified methods and the

original method are small for the shear layer images,

because the velocity gradient and maximum velocity

(displacement) are both small, which corresponds to the

similar trends of the 7 px test results shown in Fig. 5b.

Modifications D1 and D2 provide a better yield than the

original method when both the maximum velocity and

gradient are large, correspond to the similar trends of the

25 px test results shown in Fig. 6b. Modification D2 has a

greater improvement (?4.57 %) compared with modifica-

tion D1 (?3.05 %) in yield, and slightly higher in
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Fig. 7 RMS error of VB-PTV results for a 2D Oseen vortex flow

using original and displacement-shifted matching
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Fig. 8 Vector fields found by different matching methods of experimental images: a shear layer, b vortex shedding behind a cylinder, c zoom-in

view of shear layer, d zoom-in view of vortex shedding behind a cylinder. The red rectangular indicates the ‘‘wake region’’ calculated in Table 1

Table 1 Comparison of the performances results of experimental images

Particle yield Reliability

Original

(%)

Modification D1

(%)

Modification D2

(%)

Original

(%)

Modification D1

(%)

Modification D2

(%)

Shear layer 67.36 67.41 67.44 98.94 98.94 98.94

Vortex shedding 57.39 60.44 61.96 99.62 99.56 99.77

Vortex shedding

(wake)

62.76 65.41 67.14 99.65 99.66 99.81

1676 Page 8 of 9 Exp Fluids (2014) 55:1676

123



reliability. Both improvements are due to the addition of

the directional measure to increase the matching

robustness.

6 Conclusions and recommendations

The vision-based PTV technique developed in Lei et al.

(2012) relied on the principle of proximity, which favored

short matches over long ones, and also on the principles of

exclusion and similarity. Instead of relying on the principle

of proximity to the particle location, the displacement-

shifted addition in this paper applies the proximity princi-

ple to the displaced particle location based on PIV results,

utilizing the guidance of PIV more efficiently. The benefit

of using these displacement-shifted approaches in com-

parison with the original approach is that results are

noticeably improved for high gradient flows (0.3 px/px and

higher) without affecting results for lower gradient flows.

In the synthetic image tests, both displacement-shifted

approaches show noticeably reduced RMS errors, and the

second approach shows a noticeable improvement in its

yield data at the higher gradients. The methods are verified

with experimental image sets, and the results are in

agreement with the synthetic tests. These improvements are

simple to implement, expand the range of flows for which

VB-PTV is useful, and recommended in future applications

of VB-PTV.
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